fft
fft( QDataSet ds ) → QDataSet
Performs an FFT on the provided rank 1 dataset. A rank 2 dataset of
complex numbers is returned. The data must not contain fill and
must be uniformly spaced. DEPEND_0 is used to identify frequencies
if available.
Parameters
ds - a rank 1 dataset.
Returns:
a rank 2 dataset of complex numbers.
See Also:
Schemes#rank2ComplexNumbers()
Ops#ifft(QDataSet)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
fft( QDataSet ds, QDataSet window, int stepFraction, ProgressMonitor mon ) → QDataSet
fftFilter
fftFilter( QDataSet ds, int len, org.das2.qds.ops.Ops.FFTFilterType filt ) → QDataSet
Apply windows to the data to prepare for FFT. The data is reformed into a rank 2 dataset [N,len].
The filter is applied to the data to remove noise caused by the discontinuity.
This is deprecated, and windowFunction should be used so that the filter
is applied to records just before each fft is performed to save space.
Parameters
ds - rank 1, 2, or 3 data
len - size of the window.
filt - FFTFilterType.Hanning or FFTFilterType.TenPercentEdgeCosine
Returns:
data[N,len] with the window applied.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
fftLinearSpectralDensity
fftLinearSpectralDensity( QDataSet ds, QDataSet window, int stepFraction, ProgressMonitor mon ) → QDataSet
Perform the linear spectral density function
Parameters
ds - waveform data
window - the window to apply window to apply
stepFraction - advance by this much for each window (2 means 50% overlap, 4 means 75% overlap, etc.)
mon - progress monitor
Returns:
the linear spectral density
See Also:
https://holometer.fnal.gov/GH_FFT.pdf page 7 page 7
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
fftLinearSpectrum
fftLinearSpectrum( QDataSet ds, QDataSet window, int stepFraction, ProgressMonitor mon ) → QDataSet
Perform the linear spectrum function
Parameters
ds - waveform data
window - the window to apply window to apply
stepFraction - advance by this much for each window (2 means 50% overlap, 4 means 75% overlap, etc.)
mon - progress monitor
Returns:
the linear spectral density
See Also:
https://holometer.fnal.gov/GH_FFT.pdf page 7 page 7
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
fftPower
fftPower( QDataSet ds, int len, ProgressMonitor mon ) → QDataSet
create a power spectrum on the dataset by breaking it up and
doing FFTs on each segment. A unity (or "boxcar") window is used.
data may be rank 1, rank 2, or rank 3.
Looks for DEPEND_1.USER_PROPERTIES.FFT_Translation, which should
be a rank 0 or rank 1 QDataSet. If it is rank 1, then it should correspond
to the DEPEND_0 dimension.
Parameters
ds - rank 2 dataset ds(N,M) with M>len
len - the number of elements to have in each fft.
mon - a ProgressMonitor for the process
Returns:
rank 2 FFT spectrum
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
fftPower( QDataSet ds, QDataSet window, ProgressMonitor mon ) → QDataSet
fftPower( QDataSet ds, int windowLen, int stepFraction, String windowName, ProgressMonitor mon ) → QDataSet
fftPower( QDataSet ds, QDataSet window, int stepFraction, ProgressMonitor mon ) → QDataSet
fftPower( QDataSet ds ) → QDataSet
fftPowerMultiThread
fftPowerMultiThread( QDataSet ds, int len, ProgressMonitor mon ) → QDataSet
Experiment with multi-threaded FFTPower function. This breaks up the
task into four independent tasks that can be run in parallel.
Parameters
ds - rank 2 dataset ds(N,M) with M>len
len - the number of elements to have in each fft.
mon - a ProgressMonitor for the process
Returns:
rank 2 FFT spectrum
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
fftPowerSpectralDensity
fftPowerSpectralDensity( QDataSet ds, QDataSet window, int stepFraction, ProgressMonitor mon ) → QDataSet
Perform the power spectral density function
Parameters
ds - waveform data
window - the window to apply
stepFraction - advance by this much for each window (2 means 50% overlap, 4 means 75% overlap, etc.)
mon - a progress monitor
Returns:
the power spectral density
See Also:
https://holometer.fnal.gov/GH_FFT.pdf page 7 page 7
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
fftPowerSpectrum
fftPowerSpectrum( QDataSet ds, QDataSet window, int stepFraction, ProgressMonitor mon ) → QDataSet
Perform the linear spectrum function
Parameters
ds - waveform data
window - the window to apply window to apply
stepFraction - advance by this much for each window (2 means 50% overlap, 4 means 75% overlap, etc.)
mon - progress monitor
Returns:
the linear spectral density
See Also:
https://holometer.fnal.gov/GH_FFT.pdf page 7 page 7
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
fftWindow
fftWindow( QDataSet ds, int len ) → QDataSet
perform ffts on the rank 1 dataset to make a rank2 spectrogram.
Parameters
ds - rank 1 dataset
len - the window length
Returns:
rank 2 dataset.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
fillIsDifferent
fillIsDifferent( QDataSet ds1, QDataSet ds2 ) → boolean
return true of the representation of fill is different in the two data sets.
TODO: this does not consider WEIGHTS.
Parameters
ds1 - a QDataSet
ds2 - a QDataSet
Returns:
true of the representation of fill is different in the two data sets.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
findex
findex( QDataSet uu, QDataSet vv ) → QDataSet
returns the "floating point index" of each element of vv within the monotonically
increasing dataset uu. This handy number is the index of the lower bound plus the
fractional position between the two bounds. For example, findex([100,110,120],111.2) is
1.12 because it is just after the 1st element (110) and is 12% of the way from 110 to 120.
The result dataset will have the same geometry as vv. The result will be negative
when the element of vv is below the smallest element of uu. The result will be greater
than or equal to the length of uu minus one when it is greater than all elements.
When the monotonic dataset contains repeat values, the index of the first is returned.
Paul Ricchiazzi wrote this routine first for IDL as a fast replacement for the interpol routine, but
it is useful in other situations as well.
Parameters
uu - rank 1 monotonically increasing dataset, non-repeating, containing no fill values.
vv - rank N dataset with values in the same physical dimension as uu. Fill is allowed.
Returns:
rank N dataset with the same geometry as vv. It will have DEPEND_0=vv when vv is rank 1.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
findex( Object x, Object y ) → QDataSet
findgen
findgen( int len0 ) → QDataSet
returns rank 1 dataset with values [0.,1.,2.,...]
Parameters
len0 - an int
Returns:
a QDataSet
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
findgen( int len0, int len1 ) → QDataSet
findgen( int len0, int len1, int len2 ) → QDataSet
findgen( int len0, int len1, int len2, int len3 ) → QDataSet
finite
finite( QDataSet ds ) → QDataSet
returns 1 where the data is not NaN, Inf, etc I needed this when I was working with
the RBSP polar scatter script. Note valid should be used to check for valid data, which
also checks for NaN.
Parameters
ds - qdataset of any rank.
Returns:
1 where the data is not Nan or Inf, 0 otherwise.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
flatten
flatten( QDataSet ds ) → QDataSet
flatten a rank N dataset, though currently rank 4 is not supported.
The result for rank 2 is an n,3 dataset of [x,y,z], or if there are no tags, just [z].
The last index will be the dependent variable, and the first indices will
be the independent variables sorted by dimension.
Parameters
ds - the rank N dataset (note only Rank 2 is supported for now).
Returns:
rank 2 dataset bundle
See Also:
org.das2.qds.DataSetOps#flattenRank2(QDataSet)
grid(QDataSet)
flattenWaveform(QDataSet)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
flattenWaveform
flattenWaveform( QDataSet ds ) → QDataSet
flatten a rank 2 dataset where the y depend variable is just an offset from the xtag.
Note the new DEPEND_0 may have different units from ds.property(DEPEND_0).
Parameters
ds - rank 2 waveform with tags for DEPEND_0 and offsets for DEPEND_1
Returns:
rank 1 waveform
See Also:
flatten(QDataSet)
DataSetOps#flattenWaveform(QDataSet)
synchronizeNN(QDataSet, QDataSet)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
floor
floor( QDataSet ds1 ) → QDataSet
element-wise floor function.
Parameters
ds1 - a QDataSet
Returns:
a QDataSet
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
floor( double x ) → double
floor( Object ds1 ) → QDataSet
fltarr
fltarr( int len0 ) → QDataSet
create a dataset filled with zeros, stored in 4-byte floats.
Parameters
len0 - the zeroth dimension length
Returns:
rank 1 dataset filled with zeros.
See Also:
zeros(int)
dblarr(int)
strarr(int)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
fltarr( int len0, int len1 ) → QDataSet
fltarr( int len0, int len1, int len2 ) → QDataSet