org.das2.qds.DataSetUtil
Utilities for QDataSet, such as conversions from various forms
to QDataSet, and doing a units conversion.
TODO: DataSetUtil, DataSetOps, and org.virbo.dsops.Ops have become blurred
over the years. These should either be combined or new mission statements
need to be created.
DataSetUtil( )
PROPERTY_TYPE_STRING
PROPERTY_TYPE_NUMBER
PROPERTY_TYPE_BOOLEAN
PROPERTY_TYPE_MAP
PROPERTY_TYPE_QDATASET
PROPERTY_TYPE_CACHETAG
PROPERTY_TYPE_UNITS
addContext
addContext( org.das2.qds.MutablePropertyDataSet ds, QDataSet cds ) → void
adds the rank 0 dataset (a Datum) to the dataset's properties, after all
the other CONTEXT_<i> properties.
Parameters
ds - a MutablePropertyDataSet
cds - a QDataSet
Returns:
void (returns nothing)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
addContext( java.util.Map props, QDataSet cds ) → void
addQube
addQube( org.das2.qds.MutablePropertyDataSet ds ) → void
add QUBE property to dataset, maybe verifying that it is a qube. This is
intended to reduce code that builds datasets, not to verify that a dataset
is a qube.
Parameters
ds - the dataset
Returns:
void (returns nothing)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
as2DArrayOfDoubles
as2DArrayOfDoubles( QDataSet d ) → double[][]
convert the QDataSet to an array. Units and fill are ignored...
Parameters
d - the rank 2 dataset
Returns:
2-D array of doubles
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
asArrayOfDoubles
asArrayOfDoubles( QDataSet d ) → double[]
convert the QDataSet to an array. Units and fill are ignored...
Parameters
d - the rank 1 dataset.
Returns:
an array of doubles
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
asDataSet
asDataSet( org.das2.datum.DatumVector dv ) → QDataSet
return the rank 1 dataset equivalent to the DatumVector
Parameters
dv - a DatumVector
Returns:
rank 1 QDataSet.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
asDataSet( DatumRange dr ) → QDataSet
asDataSet( double d, Units u ) → DRank0DataSet
asDataSet( double d ) → DRank0DataSet
asDataSet( Datum d ) → DRank0DataSet
asDataSet( Object arr ) → QDataSet
asDataSet( Object x, Object y ) → QDataSet
asDataSet( Object x, Object y, Object z ) → QDataSet
asDatum
asDatum( org.das2.qds.RankZeroDataSet ds ) → Datum
Parameters
ds - a RankZeroDataSet
Returns:
org.das2.datum.Datum
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
asDatum( QDataSet ds ) → Datum
asDatumRange
asDatumRange( QDataSet ds, boolean sloppy ) → DatumRange
return the DatumRange equivalent of this 2-element, rank 1 bins dataset.
Parameters
ds - a rank 1, 2-element bins dataset.
sloppy - true indicates we don't check BINS_0 property.
Returns:
an equivalent DatumRange
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
asDatumRange( QDataSet ds ) → DatumRange
asDatumVector
asDatumVector( QDataSet ds ) → DatumVector
return DatumVector, which is a 1-d array of Datums.
Parameters
ds - a rank 1 QDataSet
Returns:
a DatumVector
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
bestFormatter
bestFormatter( QDataSet datums ) → DatumFormatter
return a DatumFormatter that can accurately format all of the datums
in the dataset. The goal is to identify a formatter which is also
efficient, and doesn't waste an excess of digits. This sort of code
is often needed, and is also found in:
- QStream--where ASCII mode needs efficient representation
TODO: make one code for this.
TODO: there also needs to be an optional external context ('2017-03-15') so that 'HH:mm' is a valid response.
See sftp://jbf@jfaden.net/home/jbf/ct/autoplot/script/development/bestDataSetFormatter.jy
Parameters
datums - a rank 1 dataset, or if rank>1, then return the formatter for a slice.
Returns:
DatumFormatter for the dataset.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
binarySearch
binarySearch( QDataSet ds, double key, int low, int high ) → int
perform a binary search for key within ds, constraining the search to between low and high.
Parameters
ds - a rank 1 monotonic dataset.
key - the value to find.
low - an int
high - an int
Returns:
a positive index of the found value or -index-1 the insertion point.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
bundleNames
bundleNames( QDataSet ds ) → String[]
return the name for each column of the bundle. This simply
calls SemanticOps.getComponentNames.
Parameters
ds - dataset, presumably with BUNDLE_1 property.
Returns:
array of names.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
bundleWeightsDataSet
bundleWeightsDataSet( QDataSet ds ) → QDataSet
special weightsDataSet for when there is a bundle, and each
component could have its own FILL_VALID and VALID_MAX. Each component
gets its own weights dataset in a JoinDataSet.
Parameters
ds - rank 2 bundle dataset
Returns:
dataset with the same geometry but a weightsDataSet of each bundled dataset.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
canonizeFill
canonizeFill( QDataSet ds ) → WritableDataSet
Iterate through the dataset, changing all points outside of validmin,
validmax and with zero weight to fill=-1e31. VALID_MIN and VALID_MAX
properties are cleared, and FILL_VALUE is set to -1e31.
If the dataset is writable, then the dataset is modified.
Parameters
ds - rank N QUBE dataset.
Returns:
ds with same geometry as ds.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
checkListOfIndeces
checkListOfIndeces( QDataSet ds, QDataSet indices ) → void
verify that the indeces really are indeces, and a warning may be printed
if the indeces don't appear to match the array by
looking at the MAX_VALUE property of the indeces.
Parameters
ds - the dataset.
indices - the indeces which refer to a subset of dataset.
Returns:
void (returns nothing)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
checkQube
checkQube( QDataSet ds ) → boolean
check to see if a dataset really is a qube, even if there is a
rank 2 dep1. Note this ignores BUNDLE_1 property if there is a DEPEND_1.
This was motivated by the fftPower routine, which returned a rank 2 DEPEND_1,
but is typically constant, and RBSP/ECT datasets that often have rank 2
DEPEND_1s that are constant. This
will putProperty(QDataSet.QUBE,Boolean.TRUE) when the dataset really is
a qube, or Boolean.FALSE if is clearly not a qube.
Parameters
ds - any dataset
Returns:
true if the dataset really is a qube.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
closest
closest( QDataSet ds, double d, int guess ) → int
return the index of the closest value in ds to d, using guess as a starting point. This
implementation ignores guess, but wise clients will supply it as a parameter.
Parameters
ds - a rank 1, monotonic dataset.
d - the value to find.
guess - a guess at a close index, or -1 if no guess should be made. In this case, a binary search is performed.
Returns:
index of the closest.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
closestIndex
closestIndex( QDataSet ds, Datum datum ) → int
returns the index of the closest index in the data.
This supports rank 1 datasets, and rank 2 bins datasets where the bin is min,max.
Parameters
ds - tags dataset
datum - the location to find
Returns:
the index of the closest point.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
closestIndex( QDataSet table, double x, Units units ) → int
contextAsString
contextAsString( QDataSet ds ) → String
provide the context as a string, for example to label a plot. The dataset CONTEXT_i properties are inspected,
each of which must be one of:
- rank 0 dataset
- rank 1 bins dataset
- rank 1 bundle
Here a comma is used as the delimiter.
Parameters
ds - the dataset containing context properties which are rank 0 datums or rank 1 datum ranges.
Returns:
a string describing the context.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
contextAsString( QDataSet ds, String delim ) → String
convertTo
convertTo( QDataSet ds, Units u ) → QDataSet
convert the dataset to the given units.
Parameters
ds - the dataset
u - new Units
Returns:
equivalent dataset with the new units.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
copyDimensionProperties
copyDimensionProperties( QDataSet source, org.das2.qds.MutablePropertyDataSet dest ) → void
Copy over all the dimension properties, including:
UNITS, FORMAT, SCALE_TYPE,
TYPICAL_MIN, TYPICAL_MAX,
VALID_MIN, VALID_MAX, FILL_VALUE,
NAME, LABEL, TITLE,
USER_PROPERTIES
These are dimension properties, as opposed to structural
see dimensionProperties() for a list of dimension properties.
TODO: This DOES NOT support join datasets yet.
Parameters
source - a QDataSet
dest - a MutablePropertyDataSet
Returns:
void (returns nothing)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
correlativeProperties
correlativeProperties( ) → String[]
properties that go along with the zeroth index. These are all QDataSets with dimensions compatible with the datasets.
If you trim the dataset, then these must be trimmed as well.
Returns:
the properties that go along with the zeroth index
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
courserCadence
courserCadence( org.das2.qds.RankZeroDataSet yTagWidth0, org.das2.qds.RankZeroDataSet yTagWidth1 ) → RankZeroDataSet
return the courser cadence of the two cadences. Das2's AverageTableRebinner needs to get the coursest of all the ytags.
Parameters
yTagWidth0 - rank 0 dataset that is one cadence (e.g. 84 sec)
yTagWidth1 - rank 0 dataset that is the second cadence (e.g. 70 sec)
Returns:
the courser of the two cadences. (e.g. 84 sec)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
dimensionProperties
dimensionProperties( ) → String[]
return the list of properties that pertain to the dimension that dataset
values exist. These are the properties that survive through most operations.
For example, if you flattened the dataset, what properties
would still exist? If you shuffled the data? These are not structural
properties like DEPEND_0, BUNDLE_1, etc.
Note that BUNDLE_1 will carry dimension properties as well.
Returns:
a java.lang.String[][]
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
firstValidPoint
firstValidPoint( QDataSet ds ) → QDataSet
returns the first valid point found in a dataset, or null if
no such point is found.
Parameters
ds - non-bundle dataset.
Returns:
rank zero dataset containing the first valid point, or null.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
format
format( QDataSet ds ) → String
return a human-readable string representing the dataset
Parameters
ds - the dataset to represent
Returns:
a human-readable string
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
format( QDataSet ds, boolean showContext ) → String
gcd
gcd( QDataSet ds, QDataSet d, QDataSet limit ) → QDataSet
return the greatest common divisor, which is the unit for which
all elements in the dataset are integer multiples of the result.
This works on continuous data, however, so limit is used to determine
the fuzz allowed. TODO: this needs review and is not for production use.
Parameters
ds - any dataset
d - rank 0 dataset, first factor for the dataset, error is used to detect non-zero significance.
limit - rank 0 dataset, the resolution for which data is considered equal, and this
limit should be greater than numerical precision.
Returns:
the greatest common divisor.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
gcd( QDataSet ds, QDataSet limit ) → QDataSet
getCadenceWaveform
getCadenceWaveform( QDataSet ds ) → RankZeroDataSet
return the cadence between measurements of a waveform dataset. This is
different than the cadence typically quoted, which is the cadence between
waveform records.
Parameters
ds - a QDataSet
Returns:
the cadence, possibly null.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
getContext
getContext( QDataSet ds ) → QDataSet
collect the context for the dataset. This will be a rank 2 join of
scalars or ranges, so CONTEXT_0 will be in the zeroth index of the
result. Rank 0 CONTEXT values are joined to make them rank 1.
Parameters
ds - the dataset
Returns:
a rank 2 join of 1- and 2-element datasets.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
getDimensionProperties
getDimensionProperties( QDataSet ds, java.util.Map def ) → Map
return just the properties attached to the dataset, like
UNITS and SCALE_TYPE, and not like DEPEND_x, etc.
Parameters
ds - the dataset
def - default values or null.
Returns:
a map of all the properties.
See Also:
dimensionProperties()
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
getNextIndex
getNextIndex( QDataSet ds, Datum datum ) → int
returns the first column that is after the given datum. Note the
if the datum identifies (==) an xtag, then the previous column is
returned.
Parameters
ds - the dataset
datum - a datum in the same units of the dataset.
Returns:
an int
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
getNextIndexStrict
getNextIndexStrict( QDataSet ds, Datum datum ) → Integer
Returns the index of the value which is greater than the
value less of the datum. Note for rank 2 bins, the first bin which
has an beginning less than the datum.
Parameters
ds - rank 1 monotonic tags, or rank 2 bins.
datum - a datum of the same or convertible units.
Returns:
the index, or null (None).
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
getNextInterval
getNextInterval( QDataSet ds, DatumRange dr0 ) → DatumRange
return the next interval (typically time) containing data, centered on data, with the
roughly the same width.
Parameters
ds - the dataset
dr0 - the current interval
Returns:
the next interval
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
getPreviousIndex
getPreviousIndex( QDataSet ds, Datum datum ) → int
returns the first index that is before the given datum, or zero
if no data is found before the datum.
PARV!
if the datum identifies (==) an xtag, then the previous column is
returned.
Parameters
ds - the dataset
datum - a datum in the same units of the dataset.
Returns:
the index
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
getPreviousIndexStrict
getPreviousIndexStrict( QDataSet ds, Datum datum ) → Integer
Returns the index of the value which is less than the
value less of the datum. Note for rank 2 bins, the first bin which
has an end less than the datum.
Parameters
ds - rank 1 monotonic tags, or rank 2 bins.
datum - a datum of the same or convertible units.
Returns:
the index, or null (None).
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
getPreviousInterval
getPreviousInterval( QDataSet ds, DatumRange dr0 ) → DatumRange
return the previous interval (typically time) containing data, centered on data, with the
roughly the same width.
Parameters
ds - the dataset
dr0 - the current interval
Returns:
the previous interval
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
getProperties
getProperties( QDataSet ds, java.lang.String[][] names, java.util.Map def ) → Map
return the properties listed, using the defaults if provided.
See dimensionProperties(), globalProperties().
Parameters
ds - dataset source of the properties.
names - array of names
def - defaults, or null if no defaults are to be used.
Returns:
map of the properties.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
getProperties( QDataSet ds, java.util.Map def ) → Map
getProperties( QDataSet ds ) → Map
getProperty
getProperty( QDataSet ds, String name, Object deflt ) → Object
Parameters
ds - a QDataSet
name - a String
deflt - an Object
Returns:
java.lang.Object
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
getPropertyClass
getPropertyClass( String name ) → Class
return the class for the property, to support Jython.
Parameters
name - the property name, e.g. QDataSet.TITLE
Returns:
String.class
See Also:
getPropertyType(java.lang.String) //TODO: super inefficient, this needs to be rewritten as switch
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
getPropertyType
getPropertyType( String name ) → String
return the type of the property, as a string to support use in Jython:
String,Number,Boolean,Map,QDataSet,CacheTag,Units
Parameters
name - the property name
Returns:
the property type or null if the name is not recognized
See Also:
getPropertyClass(java.lang.String)
QDataSet
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
getStringValue
getStringValue( QDataSet ds, double value, int i ) → String
return the value, which gets units from index i. from rank 1 bundle dataset.
Parameters
ds - the dataset providing units and format information.
value - double value from the dataset
i - the index of the value
Returns:
a String
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
getStringValue( QDataSet yds, double value ) → String
getStringValue( QDataSet ds ) → String
getUserProperty
getUserProperty( QDataSet ds, String name ) → Object
return the "User" property, which allow for extensions of the data model that
aren't used. This returns the property "name" under the name USER_PROPERTIES,
which must either be null or a Map<String,Object>.
Parameters
ds - The dataset containing the property.
name - The name of the user property.
Returns:
an Object
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
globalProperties
globalProperties( ) → String[]
properties that describe the dataset itself, rather than those of a dimension
or structural properties.
Returns:
the properties that describe the dataset itself
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
guessCadence
guessCadence( QDataSet xds, QDataSet yds ) → QDataSet
return the cadence for the given x tags. The goal will be a rank 0
dataset that describes the intervals, but this will also return a rank 1
dataset when multiple cadences are found. The yds values for each xds value can
also be set, specifying where the x values can be ignored because of fill.
TODO: this needs review.
Parameters
xds - the x tags, which may not contain fill values for non-null result.
yds - the y values, which if non-null is only used for fill values. This is only used if it is rank 1.
Returns:
rank 0 or rank 1 dataset.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
guessCadence( QDataSet xds, QDataSet yds, QDataSet zds ) → QDataSet
guessCadenceNew
guessCadenceNew( QDataSet xds, QDataSet yds ) → RankZeroDataSet
returns a rank 0 dataset indicating the cadence of the dataset. Using a
dataset as the result allows the result to indicate SCALE_TYPE and UNITS.
History:
- 2011-02-21: keep track of repeat values, allowing zero to be considered either mono increasing or mono decreasing
- 2011-02-21: deal with interleaved fill values, keeping track of last valid value.
Parameters
xds - the x tags, which may not contain fill values for non-null result.
yds - the y values, which if non-null is only used for fill values. This
is only used if it is rank 1.
Returns:
null or the cadence in a rank 0 dataset. The following may be
properties of the result:
- SCALE_TYPE may be "log"
- UNITS will be a ratiometric unit when the SCALE_TYPE is log, and
will be the offset unit for interval units like Units.t2000.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
indexGenDataSet
indexGenDataSet( int n ) → MutablePropertyDataSet
creates a dataset of integers 0,1,2,...,n-1.
Parameters
n - the bound
Returns:
the dataset
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
inferBins
inferBins( QDataSet yds ) → QDataSet
This is the one code to infer bin boundaries when only the
centers are available. This uses centers of adjacent data, and
extrapolates to get the edge boundaries to create an acceptable limit.
When the data is log-spaced, the centers are done in the ratiometric
space. Small (<1000 element) datasets will be sorted if necessary.
Parameters
yds - rank 1 dataset.
Returns:
rank 2 bins dataset.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
inferBinsRank2
inferBinsRank2( QDataSet ydss ) → QDataSet[]
infer the bins for the rank 2 ytags. This was first used with Juno
high-rate data, where the ytags follow the FCE implied by the magnetic
field detector.
Parameters
ydss - rank 2 dataset[n,m]
Returns:
two-element array of rank 2 datasets[n,m], where 0 is the min and 1 is the max.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
isConstant
isConstant( QDataSet ds ) → boolean
return true if each record of DEPEND_0 is the same. Rank 0 datasets
are trivially constant.
TODO: ds.slice(i) can be slow because equivalent does so much with the metadata.
Parameters
ds - any dataset
Returns:
true if the dataset doesn't change with DEPEND_0 or is rank 0.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
isConstant( QDataSet ds, int dim ) → boolean
isDataAt
isDataAt( QDataSet ds, Datum t ) → boolean
is data found at the time t, or might it be within a gap in the data?
Parameters
ds - any time-series dataset
t - the time
Returns:
true if t is within data.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
isDimensionProperty
isDimensionProperty( String name ) → boolean
return true if the property name is a valid dimension property
like "UNITS" or "FORMAT". See dimensionProperties().
Parameters
name - property name to test
Returns:
true if the property is a dimension property.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
isInheritedProperty
isInheritedProperty( String prop ) → boolean
true if the property is one that is global and is relevant throughout the
dataset, such as a title or the units.
property( "TITLE",0,0 ) often returns property("TITLE"), but
property( "DEPEND_0",0,0 ) should never return property("DEPEND_0").
This is false, for example, for DEPEND_1.
Parameters
prop - the property name.
Returns:
true if the property is inherited
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
isLogSpacing
isLogSpacing( QDataSet ds ) → boolean
return true if the data appears to have log spacing. The
data is assumed to be monotonically increasing or decreasing.
Parameters
ds - rank 1 dataset.
Returns:
true if the data is roughly log spaced.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
isMonotonic
isMonotonic( QDataSet ds ) → boolean
returns true if the dataset is monotonically increasing.
If the dataset has the MONOTONIC property set to Boolean.TRUE, believe it.
The data can contain repeated values.
An empty dataset is not monotonic.
We now use a weights dataset to more thoroughly check for fill.
The dataset may contain fill data, only the non-fill portions are considered.
Parameters
ds - the rank 1 dataset with physical units.
Returns:
true when the dataset is monotonically increasing.
See Also:
QDataSet#MONOTONIC
org.das2.qds.ArrayDataSet#monotonicSubset(org.das2.qds.ArrayDataSet)
isMonotonicAndIncreasing(QDataSet)
Ops#ensureMonotonic
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
isMonotonicAndIncreasing
isMonotonicAndIncreasing( QDataSet ds ) → boolean
returns true if the dataset is monotonically increasing
and does not contain repeat values.
An empty dataset is not monotonic.
The dataset may contain fill data, only the non-fill portions are considered.
Parameters
ds - the rank 1 dataset with physical units.
Returns:
true when the dataset is monotonically increasing.
See Also:
QDataSet#MONOTONIC
org.das2.qds.ArrayDataSet#monotonicSubset(org.das2.qds.ArrayDataSet)
isMonotonic(QDataSet)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
isMonotonicAndIncreasingQuick
isMonotonicAndIncreasingQuick( QDataSet ds ) → boolean
quickly determine, with high accuracy, if data is monotonic. This should
be a constant-time operation, and be extremely unlikely to fail.
Parameters
ds - a QDataSet
Returns:
true if the data does pass quick tests for monotonic increasing.
See Also:
isMonotonicAndIncreasing(QDataSet)
QDataSet#MONOTONIC
Ops#ensureMonotonicAndIncreasingWithFill(QDataSet)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
isMonotonicQuick
isMonotonicQuick( QDataSet ds ) → boolean
quickly determine, with high accuracy, if data is monotonic (repeated values
allowed). This should
be a constant-time operation, and be extremely unlikely to fail.
Parameters
ds - a QDataSet
Returns:
true if the data does pass quick tests for monotonic.
See Also:
isMonotonicAndIncreasing(QDataSet)
QDataSet#MONOTONIC
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
isNotBundle
isNotBundle( QDataSet ds ) → boolean
return true if the data is not a bundle and has uniform units throughout
the dataset.
Parameters
ds - any dataset.
Returns:
true if the data is not a bundle and has uniform units throughout
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
isQube
isQube( QDataSet ds ) → boolean
test to see that the dataset is a qube.
TODO: this all needs review.
Parameters
ds - QDataSet of any rank.
Returns:
true if the dataset is a qube.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
kmeansCadence
kmeansCadence( QDataSet xds, int n ) → QDataSet
use K-means algorithm to find N means in a rank 1 dataset.
Parameters
xds - dataset containing data from N normal distributions
n - number of divisions.
Returns:
dataset containing the index for each point.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
makeValid
makeValid( org.das2.qds.MutablePropertyDataSet ds ) → void
throw out DEPEND and PLANE to make dataset valid.
Parameters
ds - a MutablePropertyDataSet
Returns:
void (returns nothing)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
maybeCopyRenderType
maybeCopyRenderType( QDataSet source, org.das2.qds.MutablePropertyDataSet dest ) → void
copy over the render type, if it is still appropriate. This nasty bit of code was introduced
to support LANL data, where high-rank data is preferably plotted as a spectrogram, but can be
plotted as a stack of lineplots.
Parameters
source - a QDataSet
dest - a MutablePropertyDataSet
Returns:
void (returns nothing)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
nLargest
nLargest( QDataSet set, int n ) → QDataSet
return the value of the nth biggest item. This keeps n values in memory.
Parameters
set - rank 1 dataset containing comparable data.
n - the number of items to find
Returns:
the n largest elements, sorted.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
oneUnit
oneUnit( QDataSet ds ) → boolean
Test for bundle scheme. Returns true if the data contains data with just one unit.
For example ds[time=100,en=30] might have BUNDLE_1 to specify labels for each of the
30 channels, but each of its measurements have the same units. However, bundle(time,density)
results in a dataset with BUNDLE_1 with the two datasets having different units.
When two bundled dataset's units are convertible but not equal this will return false.
This will return true for a zero-length dataset.
Parameters
ds - the dataset
Returns:
true if the dataset has just one unit.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
product
product( int[][] qube ) → int
returns 1 for zero-length qube, the product otherwise.
Parameters
qube - int array
Returns:
the product of the elements of the array
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
propertyNames
propertyNames( ) → String[]
Return the names of non-structural properties of the dataset, like the UNITS and CADENCE.
These are the dimensionProperties, plus others specific to the dataset, such as CADENCE and
DELTA_PLUS.
Returns:
the names of non-structural properties of the dataset, like the UNITS and CADENCE.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
putProperties
putProperties( java.util.Map properties, org.das2.qds.MutablePropertyDataSet ds ) → void
copy all properties into the dataset by iterating through the map. Properties
that are equal to null are not copied, since null is equivalent to the
property not found.
Parameters
properties - the properties
ds - the mutable property dataset, which is still mutable.
Returns:
void (returns nothing)
See Also:
getProperties(QDataSet)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
qubeDims
qubeDims( QDataSet ds ) → int[]
provides a convenient way of indexing qubes, returning an int[] of
length ds.rank() containing each dimension's length,
or null if the dataset is not a qube.
Parameters
ds - a QDataSet
Returns:
int[] of length ds.rank() containing each dimension's length, or null if the dataset is not a qube.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
qubeSubset
qubeSubset( QDataSet ds, int reclen ) → QDataSet
return a subset of the dataset which is a qube.
Parameters
ds - a rank N dataset like dataset[3,1616*,6144*], where asterisks (stars) indicate it is not a qube.
reclen - the record length for each record.
Returns:
a rank N-1 dataset.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
rangeOfMonotonic
rangeOfMonotonic( QDataSet ds ) → int[]
returns the indeces of the min and max elements of the monotonic dataset.
This uses DataSetUtil.isMonotonic() which would be slow if MONOTONIC is
not set.
Parameters
ds - monotonic, rank 1 dataset.
Returns:
the indeces [min,max] note max is inclusive.
See Also:
org.das2.qds.ops.Ops#extent which returns the range containing any data. which returns the range containing any data.
isMonotonic(QDataSet) which must be true
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
repeatingSignal
repeatingSignal( QDataSet yds ) → int
return 0 or the number of values after which the signal repeats. For example,
ds= dataset([1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,1,2])
assert repeatingSignal(ds)==4
if the data contains fill, then it is also not repeating.
Parameters
yds - the rank 1 dataset.
Returns:
the number of samples before a repeat, or 0 if the signal is not repeating.
See Also:
guessCadenceNew
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
replicateDataSet
replicateDataSet( int n, double value ) → MutablePropertyDataSet
creates a dataset with the given cadence, start and length.
Parameters
n - the number of elements
value - the value for each element
Returns:
the dataset
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
samePopulation
samePopulation( QDataSet ds1, QDataSet ds2 ) → boolean
true if the two datasets appear to be from the same population.
Parameters
ds1 - first dataset
ds2 - second dataset
Returns:
true if the two datasets appear to be from the same population
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
sliceProperties
sliceProperties( QDataSet ds, int index, java.util.Map result ) → Map
return properties attached to the slice at index. Note the slice
implementations use this, and this only returns properties from
dimensionProperties().
http://autoplot.org//QDataSet#20150514
Note this does not look at BUNDLE_1 properties. TODO: consider this.
Parameters
ds - the dataset to slice.
index - index to slice at.
result - a map to insert the new properties, or null if a new one should be created.
Returns:
a map of properties attached to the slice at index
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
statsString
statsString( QDataSet ds ) → String
return a human readable statistical representation of the dataset. Currently
this is the mean, stddev ad number of points.
Parameters
ds - the data
Returns:
return a human readable statistical representation
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
sum
sum( int[][] qube ) → int
returns 0 for zero-length qube, the sum otherwise.
Parameters
qube - int array
Returns:
the sum of the elements of the array
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
tagGenDataSet
tagGenDataSet( int n, double start, double cadence ) → MutablePropertyDataSet
creates a dataset with the given cadence, start and length.
This is danger code, because the CADENCE must be reset if the UNITS are reset.
use tagGenDataSet( int n, final double start, final double cadence, Units units ) if
units are going to be specified.
Parameters
n - the number of elements
start - the value for the first element.
cadence - the step size between elements
Returns:
the dataset
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
tagGenDataSet( int n, double start, double cadence, Units units ) → MutablePropertyDataSet
toBundleDs
toBundleDs( QDataSet labels ) → MutablePropertyDataSet
make a proper bundle ds from a simple bundle containing ordinal units
This assumes that labels is a unique set of labels.
See http://autoplot.org/QDataSet#DataSet_Properties under BUNDLE_1.
See DataSetOps.unbundle
Parameters
labels - a QDataSet
Returns:
a BundleDescriptor to be set as BUNDLE_i. See BundleDataSet
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
toSparkline
toSparkline( QDataSet ds, QDataSet extent, boolean bar ) → String
Make a unicode spark line http://www.ssec.wisc.edu/~tomw/java/unicode.html.
This should be for human consumption, because future versions may include data
reduction and doubling up characters.
See commented code in MetadataPanel.histStr. (I knew I had done this before...)
Parameters
ds - the rank N (typically 1) dataset
extent - None or the range, see Ops.extent(ds)
bar - true indicates bars should be used instead of scatter
Returns:
string that is a sparkline.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
toString
toString( QDataSet ds ) → String
provide a string representation of the dataset. This is intended for
human consumption, but does follow rules outlined in
http://autoplot.org//developer.datasetToString
Parameters
ds - any dataset.
Returns:
a short, human-readable representation of the dataset.
See Also:
format(QDataSet, boolean)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
toString( int[][] qube ) → String
totalLength
totalLength( QDataSet ds ) → int
return the total number of values in the dataset. For qubes this is the product
of the dimension lengths, for other datasets we create a dataset of lengths
and total all the elements.
Parameters
ds - a QDataSet
Returns:
the number of values in the dataset.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
totalLengthAsLong
totalLengthAsLong( QDataSet ds ) → long
return the total number of values in the dataset, as a long. For qubes this is the product
of the dimension lengths, for other datasets we create a dataset of lengths
and total all the elements.
Parameters
ds - a QDataSet
Returns:
the number of values in the dataset.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
trimProperties
trimProperties( QDataSet ds, int start, int stop ) → Map
help out implementations of the QDataSet.trim() command. This does the dimension properties
and geometric properties like DEPEND_0 and DELTA_PLUS. This also
checks for indexed properties, which are NAME__i.
Parameters
ds - the dataset with properties to trim.
start - start index of trim operation
stop - exclusive stop index of the trim operation.
Returns:
the properties of ds, trimmed to the indices.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
validPoints
validPoints( QDataSet ds ) → QDataSet
return just the valid points of the dataset.
Parameters
ds - a dataset rank > 0.
Returns:
the valid points of the dataset in a rank 1 dataset.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
validate
validate( QDataSet ds, java.util.List problems ) → boolean
returns true if the dataset is valid, false otherwise. If problems is
non-null, then problems will be indicated here.
Parameters
ds - rank N dataset.
problems - insert problem descriptions here, if null then ignore
Returns:
true if the dataset is valid, false otherwise
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
validate( QDataSet xds, QDataSet yds, java.util.List problems ) → boolean
validate( QDataSet xds, QDataSet yds, QDataSet zds, java.util.List problems ) → boolean
value
value( org.das2.qds.RankZeroDataSet ds, Units tu ) → double
get the value of the rank 0 dataset in the specified units.
For example, value( ds, Units.km )
Parameters
ds - a RankZeroDataSet
tu - target units
Returns:
the double in target units.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
weightsDataSet
weightsDataSet( QDataSet ds ) → QDataSet
Provide consistent valid logic to operators by providing a QDataSet
with >0.0 where the data is valid, and 0.0 where the data is invalid.
VALID_MIN, VALID_MAX and FILL_VALUE properties are used.
Note, when FILL_VALUE is not specified, -1e31 is used. This is to
support legacy logic.
For convenience, the property SUGGEST_FILL is set to the fill value used.
Parameters
ds - the dataset
Returns:
a dataset with the same geometry with zero or positive weights.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
xTagBinarySearch
xTagBinarySearch( QDataSet ds, Datum datum, int low, int high ) → int
returns the index of a tag, or the (-(insertion point) - 1). (See Arrays.binarySearch)
Parameters
ds - monotonically increasing data.
datum - value we are looking for
low - inclusive lower bound of the search
high - inclusive upper bound of the search
Returns:
the index of a tag, or the (-(insertion point) - 1)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]