org.das2.qds.DataSetOps
Useful operations for QDataSets, such as slice2, leafTrim.
TODO: identify which functions appear here instead of Ops.java.
DataSetOps( )
DS_LENGTH_LIMIT
absolute length limit for plots. This is used to limit the elements used in autoranging, etc.
addElement
addElement( int[] array, int value ) → int[]
adds an element to the array
Parameters
array - length N array
value - the value to append
Returns:
array with the element, length N+1.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
addElement( int value, int[] array ) → int[]
applyIndex
applyIndex( QDataSet ds, QDataSet indices ) → QDataSet
return the dataset with records rearranged according to indices.
Parameters
ds - rank N dataset, where N>0
indices - rank 1 dataset, length m.
Returns:
length m rank N dataset.
See Also:
applyIndex(QDataSet, int, QDataSet, boolean)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
applyIndex( QDataSet ds, int idim, QDataSet sort, boolean deps ) → org.das2.qds.WritableDataSet
applyIndexAllLists
applyIndexAllLists( QDataSet rods, QDataSet[] lists ) → org.das2.qds.ArrayDataSet
handle special case where rank 1 datasets are used to index a rank N array. Supports negative indices.
This was extracted from PyQDataSet because it should be useful in Java codes as well.
Parameters
rods - the dataset
lists - datasets of rank 0 or rank 1
Returns:
the array extracted.
See Also:
applyIndex which is similar which is similar
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
applyIndexInSitu
applyIndexInSitu( org.das2.qds.WritableDataSet ds, QDataSet sort ) → void
apply the sort to the data on the zeroth dimension. The dataset
must be mutable, and the dataset itself is modified. This was introduced
to support AggregatingDataSource but should be generally useful.
Parameters
ds - a writable dataset that is still mutable.
sort - the new sort indeces.
Returns:
void (returns nothing)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
boundsContains
boundsContains( QDataSet bounds, Datum xValue, Datum yValue ) → boolean
return true of the bounds overlaps with the x and y values.
Parameters
bounds - bounding box
xValue - the x range
yValue - the y range
Returns:
true of the bounds overlap
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
bundleNames
bundleNames( QDataSet bundleDs ) → String[]
return the names of the dataset that can be unbundled.
Parameters
bundleDs - a QDataSet
Returns:
and array of the bundle names.
See Also:
DataSetOps#unbundle(QDataSet, java.lang.String)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
changesDimensions
changesDimensions( String p ) → boolean
indicate if this one operator changes the dimensions. For example,
|smooth doesn't change the dimensions, but fftPower and slice do.
Parameters
p - the filter, e.g. "|smooth"
Returns:
true if the dimensions change.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
changesDimensions( String c0, String c1 ) → boolean
changesIndependentDimensions
changesIndependentDimensions( String p ) → boolean
indicate if this one operator changes the independent dimensions. For example,
|smooth doesn't change the dimensions, but |multiply also doesn't change the independent dimension.
Parameters
p - the filter, e.g. "|smooth"
Returns:
true if the dimensions change.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
changesIndependentDimensions( String c0, String c1 ) → boolean
dbAboveBackgroundDim0
dbAboveBackgroundDim0( QDataSet ds, double level ) → QDataSet
normalize the level-th percentile from:
rank 1: each element (same as removeBackground1)
rank 2: each column of the dataset
rank 3: each column of each rank 2 dataset slice.
There must be at least 10 elements. If the data is already in dB, then the result is a difference.
This is assuming the units are similar to voltage, not a power, we think,
containing code like 20 * Math.log10( ds / background ).
Parameters
ds - a QDataSet
level - the percentile level, e.g. 10= 10%
Returns:
the result dataset, in dB above background.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
dbAboveBackgroundDim1
dbAboveBackgroundDim1( QDataSet ds, double level ) → QDataSet
normalize the nth-level percentile from:
- rank 1: each element
- rank 2: each row of the dataset
- rank 3: each row of each rank 2 dataset slice.
If the data is already in dB, then the result is a difference.
This is assuming the units are similar to voltage, not a power, we think,
containing code like 20 * Math.log10( ds / background ).
Parameters
ds - a QDataSet
level - the percentile level, e.g. 10= 10%
Returns:
the result dataset, in dB above background.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
dbAboveBackgroundDim1( QDataSet ds, double level, boolean power ) → QDataSet
dependBounds
dependBounds( QDataSet ds ) → QDataSet
return a bounding qube of the independent dimensions containing
the dataset. If r is the result of the function, then for
- rank 1: r.slice(0) x bounds, r.slice(1) y bounds
- rank 2 waveform: r.slice(0) x bounds, r.slice(1) y bounds
- rank 2 table:r.slice(0) x bounds r.slice(1) DEPEND_0 bounds.
- rank 3 table:r.slice(0) x bounds r.slice(1) DEPEND_0 bounds.
Parameters
ds - rank 1,2, or 3 dataset.
Returns:
a bounding qube of the independent dimensions
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
dependBoundsSimple
dependBoundsSimple( QDataSet ds ) → QDataSet
return a bounding qube of the independent dimensions containing
the dataset. If r is the result of the function, then for
- rank 1: r.slice(0) x bounds, r.slice(1) y bounds
- rank 2 waveform: r.slice(0) x bounds, r.slice(1) y bounds
- rank 2 table:r.slice(0) x bounds r.slice(1) DEPEND_0 bounds.
- rank 3 table:r.slice(0) x bounds r.slice(1) DEPEND_0 bounds.
This does not take DELTA_PLUS and DELTA_MINUS into account.
When all the data is fill, ds[0,0] will be positive infinity.
Parameters
ds - a rank 1,2, or 3 dataset.
Returns:
a bounding qube of the independent dimensions
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
flattenBundleDescriptor
flattenBundleDescriptor( QDataSet bundle1 ) → QDataSet
returns a bundle descriptor roughly equivalent to the BundleDescriptor
passed in, but will describe each dataset as if it were rank 1. This
is useful for when the client can't work with mixed rank bundles anyway
(like display data).
Parameters
bundle1 - a QDataSet
Returns:
a QDataSet
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
flattenRank2
flattenRank2( QDataSet ds ) → QDataSet
flatten a rank 2 dataset. The result is a n,3 dataset
of [x,y,f].
History:
- modified for use in PW group.
- missing DEPEND_1 resulted in NullPointerException, so just use 0,1,2,..,n instead and always have rank 2 result.
Parameters
ds - rank 2 table dataset
Returns:
rank 2 dataset that is that is array of (x,y,f).
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
flattenRank3
flattenRank3( QDataSet ds ) → QDataSet
flatten a rank 3 dataset. The result is a n,4 dataset
of [x,y,z,f], or if there are no tags just rank 1 f.
For a rank 3 join (array of tables), the result will
be ds[n,3].
Parameters
ds - rank 3 table dataset
Returns:
rank 2 dataset that is array of (x,y,z,f) or rank 1 f.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
flattenWaveform
flattenWaveform( QDataSet ds ) → QDataSet
flatten a rank 2 dataset where the y depend variable is just an offset from the xtag. This is
a nice example of the advantage of using a class to represent the data: this requires no additional
storage to handle the huge waveform. Note the new DEPEND_0 may have different units from ds.property(DEPEND_0).
Parameters
ds - rank 2 waveform with tags for DEPEND_0 and offsets for DEPEND_1
Returns:
rank 1 waveform
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
getBackgroundLevel
getBackgroundLevel( QDataSet ds, double level ) → QDataSet
Get the background level by sorting the data. The result is rank one less than the input rank.
Parameters
ds - rank 1, 2, or rank 3 join.
level - the level between 0 and 100.
Returns:
a QDataSet
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
getComponentType
getComponentType( QDataSet ds ) → java.lang.Class
return the class type that can accurately store data in this
dataset. This was motivated by DDataSets and FDataSets, but also
IndexGenDataSets.
Parameters
ds - the dataset.
Returns:
the class that can store this type. double.class is returned when the class cannot be identified.
See Also:
ArrayDataSet#create(java.lang.Class, int[])
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
getNthPercentileSort
getNthPercentileSort( QDataSet ds, double n ) → QDataSet
returns the value from within a distribution that is the nth percentile division. This
returns a fill dataset (Units.dimensionless.getFillDouble()) when the data is all fill.
Parameters
ds - the dataset
n - percent between 0 and 100.
Returns:
a QDataSet
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
grid
grid( QDataSet ds ) → QDataSet
takes rank 2 link (x,y,z) and makes a table from it z(x,y)
Parameters
ds - rank 2 link (x,y,z)
Returns:
a table from it z(x,y)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
histogram
histogram( QDataSet ds, double min, double max, double binsize ) → QDataSet
returns a rank 1 dataset that is a histogram of the data. Note there
will also be in the properties:
count, the total number of valid values.
nonZeroMin, the smallest non-zero, positive number
Parameters
ds - rank N dataset
min - the min of the first bin. If min=-1 and max=-1, then automatically set the min and max.
max - the max of the last bin.
binsize - the size of each bin.
Returns:
a rank 1 dataset with each bin's count. DEPEND_0 indicates the bin locations.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
indexOfBundledDataSet
indexOfBundledDataSet( QDataSet bundleDs, String name ) → int
return the index of the named bundled dataset. This cleans up
the name so that is contains just a Java-style identifier. Also, ch_1 is
always implicitly index 1.
Last, if safe names created from labels match that this is used. For example,
bds=ripplesVectorTimeSeries(100)
2==indexOfBundledDataSet( bds, "Z" )
demonstrates its use.
Last, extraneous spaces and underscores are removed to see if this will result in a match.
Parameters
bundleDs - a bundle dataset with the property BUNDLE_1 or DEPEND_1 having EnumerationUnits, (or BUNDLE_0 for a rank 1 dataset).
name - the named dataset.
Returns:
the index or -1 if the name is not found.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
isProcessAsync
isProcessAsync( String c ) → boolean
return true if the process described in c is probably a slow
process that should be done asynchronously. For example, do
a long fft on a different thread and use a progress monitor. Processes
that take a trivial, constant amount of time should return false, and
may be completed on the event thread,etc.
Parameters
c - process string, as in sprocess.
Returns:
true if the process described in c is probably a slow process
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
leafTrim
leafTrim( QDataSet ds, int start, int end ) → org.das2.qds.MutablePropertyDataSet
pull out a subset of the dataset by reducing the number of columns in the
last dimension. This does not reduce rank. This assumes the dataset has no
row with length>end.
This is extended to support rank 4 datasets.
TODO: This probably doesn't handle bundles property.
TODO: slice and trim should probably be implemented here for efficiently.
Parameters
ds - rank 1 or more dataset
start - first index to include.
end - last index, exclusive
Returns:
dataset of the same rank.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
makeProcessStringCanonical
makeProcessStringCanonical( String s ) → String
replace any component reference C, to explicit "|unbundle(C)"
Parameters
s - the process string, like "X|fftPower(512,2)"
Returns:
canonical version, like "|unbundle(X)|fftPower(512,2)"
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
makePropertiesMutable
makePropertiesMutable( QDataSet dataset ) → org.das2.qds.MutablePropertyDataSet
return a dataset that has mutable properties. If the dataset parameter already has, then the
dataset is returned. If the dataset is a MutablePropertyDataSet but the immutable flag is
set, then the dataset is wrapped to make the properties mutable.
Parameters
dataset - dataset
Returns:
a MutablePropertyDataSet that is has a wrapper around the dataset, or the dataset.
See Also:
DataSetWrapper
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
makeWritable
makeWritable( QDataSet dataset ) → org.das2.qds.WritableDataSet
return a dataset that is writable. If the dataset parameter of this idempotent
function is already writable, then the
dataset is returned. If the dataset is a WritableDataSet but the immutable flag is
set, then the a copy is returned.
Parameters
dataset - a QDataSet
Returns:
a WritableDataSet that is either a copy of the read-only dataset provided, or the parameter writable dataset provided.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
moment
moment( QDataSet ds ) → org.das2.qds.RankZeroDataSet
performs the moment (mean,variance,etc) on the dataset.
Parameters
ds - rank N QDataSet.
Returns:
rank 0 dataset of the mean. Properties contain other stats:
stddev, RankZeroDataSet
validCount, Integer, the number valid measurements
invalidCount, Integer, the number of invalid measurements
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
processDataSet
processDataSet( String c, QDataSet fillDs, ProgressMonitor mon ) → QDataSet
apply process to the data. This is like sprocess, except that the component can be extracted as the first step.
In general these can be done on the same thread (like
slice1), but some are slow (like fftPower). This is a copy of PlotElementController.processDataSet.
Parameters
c - the process string, like "bgsmx|slice0(9)|histogram()"
fillDs - the input dataset.
mon - a monitor for the processing
Returns:
dataset resulting form filters.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
removeElement
removeElement( int[] array, int index ) → int[]
removes the index-th element from the array.
Parameters
array - length N array
index - the index to remove
Returns:
array without the element, length N-1.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
slice
slice( QDataSet ds, int dimension, int index ) → org.das2.qds.MutablePropertyDataSet
slice on the dimension. This saves from the pain of having this branch
all over the code.
Parameters
ds - the rank N data to slice.
dimension - the dimension to slice, 0 is the first.
index - the index to slice at.
Returns:
the rank N-1 result.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
slice0
slice0( QDataSet ds, int index ) → org.das2.qds.MutablePropertyDataSet
slice on the first dimension. Note the function ds.slice(index) was
added later and will typically be more efficient. This will create a new
Slice0DataSet.
DO NOT try to optimize this by calling native trim, some native slice
implementations call this.
TODO: This actually needs a bit more study, because there are codes that
talk about not using the native slice because it copies data and they just
want metadata. This probably is because Slice0DataSet doesn't check for
immutability, and really should be copying. This needs to be fixed,
making sure the result of this call is immutable, and the native slice
really should be more efficient, always.
Parameters
ds - rank 1 or more dataset
index - the index to slice at
Returns:
rank 0 or more dataset.
See Also:
QDataSet#slice(int)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
slice1
slice1( QDataSet ds, int index ) → org.das2.qds.MutablePropertyDataSet
slice dataset operator assumes a qube dataset
by picking the index-th element of dataset's second dimension, without
regard to tags.
Parameters
ds - rank 2 or more dataset
index - the index to slice at
Returns:
rank 1 or more dataset.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
slice2
slice2( QDataSet ds, int index ) → org.das2.qds.MutablePropertyDataSet
slice dataset operator assumes a qube dataset
by picking the index-th element of dataset's second dimension, without
regard to tags.
Parameters
ds - rank 3 or more dataset
index - the index to slice at.
Returns:
rank 2 or more dataset.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
slice3
slice3( QDataSet ds, int index ) → org.das2.qds.MutablePropertyDataSet
slice dataset operator assumes a qube dataset
by picking the index-th element of dataset's second dimension, without
regard to tags.
Parameters
ds - rank 4 or more dataset.
index - index to slice at
Returns:
rank 3 or more dataset.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
sliceProperties
sliceProperties( java.util.Map properties, int sliceDimension ) → java.util.Map
we've sliced a dataset, removing an index. move the properties. This was Ops.sliceProperties
For example, after slicing the zeroth dimension (time), what was DEPEND_1 is
becomes DEPEND_0.
Parameters
properties - the properties to slice.
sliceDimension - the dimension to slice at (0,1,2...QDataSet.MAX_HIGH_RANK)
Returns:
the properties after the slice.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
sliceProperties0
sliceProperties0( int index, java.util.Map props ) → java.util.Map
method to help dataset implementations implement slice.
2010-09-23: support rank 2 DEPEND_2 and DEPEND_3
2010-09-23: add BINS_1 and BUNDLE_1, Slice0DataSet calls this.
2010-02-24: BUNDLE_0 handled.
2011-03-25: add WEIGHTS_PLANE
Parameters
index - the index to slice at in the zeroth index.
props - the properties to slice.
Returns:
the properties after the slice.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
sort
sort( QDataSet ds ) → QDataSet
returns a list of indeces that sort the dataset. I don't like this implementation, because
it requires that an array of Integers (not int[]) be created. Invalid measurements are not indexed in
the returned dataset.
If the sort is monotonic, then the property MONOTONIC will be Boolean.TRUE.
Parameters
ds - rank 1 dataset, possibly containing fill.
Returns:
indeces that sort the data.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
sprocess
sprocess( String c, QDataSet fillDs, ProgressMonitor mon ) → QDataSet
sprocess implements the poorly-named filters string / process string of Autoplot, allowing
clients to "pipe" data through a chain of operations. For example, the filters string
"|slice0(9)|histogram()" will slice on the ninth index and then take a histogram of that
result. See http://www.papco.org/wiki/index.php/DataReductionSpecs (TODO: wiki page was lost,
which could probably be recovered.) There's a big problem here:
if the command is not recognized, then it is ignored. We should probably change this,
but the change should be at a major version change in case it breaks things.
Parameters
c - process string like "slice0(9)|histogram()"
fillDs - The dataset loaded from the data source controller, with initial filters (like fill) applied.
mon - monitor for the processing.
Returns:
the dataset after the process string is applied.
See Also:
http://autoplot.org/developer.dataset.filters
http://autoplot.org/developer.panel_rank_reduction
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
suggestFillForComponentType
suggestFillForComponentType( java.lang.Class c ) → double
return a fill value that is representable by the type.
Parameters
c - the class type, including double.class, float.class, etc.
Returns:
a fill value that is representable by the type.
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
transpose2
transpose2( QDataSet ds ) → QDataSet
transpose the rank 2 qube dataset so the rows are columns and the columns are rows.
Parameters
ds - rank 2 Qube DataSet.
Returns:
rank 2 Qube DataSet
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
trim
trim( QDataSet ds, int offset, int len ) → org.das2.qds.MutablePropertyDataSet
reduce the number of elements in the dataset to the dim 0 indeces specified.
This does not change the rank of the dataset.
DO NOT try to optimize this by calling native trim, some native trim
implementations call this.
Parameters
ds - the dataset
offset - the offset
len - the length, (not the stop index!)
Returns:
trimmed dataset
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
trim( QDataSet dep, int start, int stop, int stride ) → org.das2.qds.MutablePropertyDataSet
unbundle
unbundle( QDataSet bundleDs, String name ) → QDataSet
Extract the named bundled dataset. For example, extract B_x from bundle of components.
Parameters
bundleDs - a bundle of datasets
name - the name of the bundled dataset, or "ch_<i>" where i is the dataset number
Returns:
the named dataset
See Also:
unbundle(QDataSet, int)
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]
unbundle( QDataSet bundleDs, int ib ) → QDataSet
unbundle( QDataSet bundleDs, int ib, boolean highRank ) → QDataSet
unbundleDefaultDataSet
unbundleDefaultDataSet( QDataSet bundleDs ) → QDataSet
extract the dataset that is dependent on others, or the last one.
For example, the dataset ds[:,"x,y"] → y[:]
Parameters
bundleDs - a bundle of datasets
Returns:
the default dataset
See Also:
Schemes#bundleDataSet()
[search for examples]
[view on GitHub]
[view on old javadoc]
[view source]