package ProGAL.dataStructures; /** * A heap-based priority queue, without any concurrency control * (i.e., no blocking on empty/full states). * This class provides the data structure mechanics for BoundedPriorityQueue. * <p> * The class currently uses a standard array-based heap, as described * in, for example, Sedgewick's Algorithms text. All methods * are fully synchronized. In the future, * it may instead use structures permitting finer-grained locking. * <p>[<a href="http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html"> Introduction to this package. </a>] **/ public class Heap { protected Object[] nodes; // tree nodes, packed into an array protected int count = 0; // number of used slots protected SortTool tool; // for ordering /* **************************************************************************** * Creates a heap with the given initial capacity and with the given SortTool * @exception IllegalArgumentException if capacity less or equal to zero. ******************************************************************************/ public Heap(int capacity, SortTool tool) throws IllegalArgumentException { if (capacity < 0) capacity = 0; nodes = new Object[capacity]; this.tool = tool; } /* * Creates a heap with the given capacity, and relying on natural ordering. */ public Heap(int capacity) { this(capacity, null); } /* * Creates a heap of the given set in O(n) time, with the given SortTool */ public Heap(Set<Object> set, SortTool tool) { count = set.getSize(); nodes = new Object[count]; this.tool = tool; System.arraycopy(set.getElements(), 0, nodes, 0, count); for (int i = parent(count-1); i >= 0; i--) siftDown(i); } // indexes of heap parents and children protected final int parent(int k) { return (k - 1) / 2; } protected final int left(int k) { return 2 * k + 1; } protected final int right(int k) { return 2 * (k + 1); } public Object[] getObjects() { return nodes; } /** * returns true if the heap is empty. * @return */ public boolean isEmpty() { return count == 0; } public int getSize() { return count; } /** * returns the i-th object in the binary heap. This is not a standard operation * @param i * @return */ public Object getItem(int i) { return nodes[i]; } public void setItem(int i, Object x) { nodes[i] = x; } public void siftUp(int k) { int q = k; int p; Object temp; while ((q > 0) && (tool.compare(nodes[q], nodes[parent(q)]) < 0)) { p = parent(q); temp = nodes[q]; nodes[q] = nodes[p]; nodes[p] = temp; q = p; } } public void siftDown(int k) { int q = k; int l = left(q); int r; int min; while (l < count) { r = right(q); if ((r == count) || (tool.compare(nodes[l], nodes[r]) < 0)) min = l; else min = r; if (tool.compare(nodes[min], nodes[q]) < 0) { Object temp = nodes[q]; nodes[q] = nodes[min]; nodes[min] = temp; q = min; l = left(q); } else break; } } /* * insert an element, resize if necessary */ public synchronized void insert(Object x) { if (count >= nodes.length) { int newcap = 3 * nodes.length / 2 + 1; Object[] newnodes = new Object[newcap]; System.arraycopy(nodes, 0, newnodes, 0, nodes.length); nodes = newnodes; } nodes[count++] = x; siftUp(count-1); } /** * Return and remove least element, or null if empty **/ public synchronized Object extract() { if (count < 1) return null; Object x = nodes[0]; --count; nodes[0] = nodes[count]; nodes[count] = null; siftDown(0); return x; } /** Return least element without removing it, or null if empty **/ public synchronized Object peek() { if (count > 0) return nodes[0]; else return null; } /** Return number of elements **/ public synchronized int size() { return count; } /** remove all elements **/ public synchronized void clear() { for (int i = 0; i < count; ++i) nodes[i] = null; count = 0; } /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub } }